Lichen bioindicators of nitrogen and sulfur deposition in dry forests of Utah and New Mexico, USA

Heather T. Root, Sarah Jovan, Mark Fenn, Michael Amacher, Josh Hall, John D. Shaw

- Why forests?
- Why lichens?
- What did we do?
- What did we find?
- What do we still want to know?

https://www.allsaveutah.com/wp-content/uploads/2019/06/uinta-3710703_1920.jpg

Photo by Leia Larson, Standard Examiner

- Why forests?
- Why lichens?
- What did we do?
- What did we find?
- What do we still want to know?

Photo by Bruce McCune

Goals

How is lichen N related to N deposition in the forest?

Use lichen N to map N deposition in forests all across the region.

- Why forests?
- Why lichens?
- What did we do?
- What did we find?
- What do we still want to know?

lichen N concentration

throughfall N deposition

Service Layer Credits: Sources: Esri, USGS, NOAA

changed out throughfall deposition collectors each fall and spring

ICP analysis of throughfall deposition collectors and lichens N concentration (and S, C, cations, metals....)

- Why forests?
- Why lichens?
- What did we do?
- What did we find?
- What do we still want to know?

throughfall deposition over time

throughfall deposition - spatial

Lichen species	Predictor	Estimates (intercept, slope)	R^2	p
Melanohalea exasperatula	annual throughfall N	1.30, 0.266	0.58	0.0004
Melanohalea subolivacea	annual throughfall N	1.43, 0.171	0.31	0.062

Lichen species	Predictor	Estimates (intercept, slope)	R^2	p
Melanohalea exasperatula	Fall-Spring throughfall N	1.645, 3.817	0.59	0.0003
Melanohalea subolivacea	Fall-Spring throughfall N	1.520, 3.436	0.42	0.0227
Xanthomendoza montana	Fall-Spring throughfall N	1.950, 2.682	0.28	0.0238

- Why forests?
- Why lichens?
- What did we do?
- What did we find?
- What do we still want to know?

Where the deposition comes from

More dry deposition in SW How do lichens absorb from different kinds of deposition?

Different kinds of forests add variability

Why no success in New Mexico?

- thunderstorms
- sample timing mismatch
- variability within plots

Photo from: http://cdn.c.photoshelter.com/img-get/I0000bgrokNctp1o/s/850/850/The-Altar-Of-The-Gas-Gods.jpg

Wrap-up

- Lichens spatial patterns of deposition
- Limitations
 - correlation in Utah but not NM
 - Integrate over time
- Suggestions to improve
 - focus on best species
 - timing sample collection
 - washing samples

Acknowledgements

Funding from USDA Forest Service Forest Inventory and Analysis Program

Field and lab assistants

